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Glossary

Absolute methods – A research methodology that

consists of an in-depth examination of high-level

experts, usually in a task specific to their domain of

expertise (e.g., playing a game of chess for chess

experts).

Chunk – A unit of knowledge that is composed of

several smaller units of information.

Declarative knowledge – This consists of

descriptions about the world including facts,

strategies, and principles, and is commonly referred

to as knowing that.

Knowledge compilation – A cognitive mechanism

hypothesized to interpret declarative knowledge into

a set of specific procedural rules given a particular

goal.

Procedural knowledge – This consists of

information for how to perform particular actions to

accomplish task goals, and is commonly referred to

as knowing how.

Relative methods – A research methodology that

consists of comparing more- to less-experienced

participants, often in a neutral task not typically

practiced in their domain of expertise (e.g., recalling

chess positions for chess experts).

Schema – A hierarchical knowledge structure that

includes prototypical information about the type of

problem, including declarative knowledge of objects,

facts, strategies, and constraints and may also

include procedural operators for solving the problem.

Problem solving is a critical cognitive activity that perme-
ates many aspects of our day-to-day lives. We solve
problems at home, school, and work ranging from the
simple – such as figuring out the tip on a bill – to the
complex – such as planning the logistics of a family trip.
Problems sometimes have clear goals and steps you can
take (as in algebra problems), but sometimes have vague
goals or ambiguity about what solution methods are pos-
sible. The latter are called ill-structured problems and are
considered much more difficult than well-structured pro-
blems. Developing expertise in problem solving is critical
to the success of a wide range of human activities, includ-
ing pursuits in science, art, business, and politics. As our
society becomes ever-more technologically diverse and

sophisticated, experts are sought in more and more
specialized fields. Having a scientific explanation of expert
performance is needed to understand its development and
to facilitate its acquisition. Knowing what to teach influ-
ences the methods of teaching. Expertise research is an area
that provides a basis for determining what needs to be
taught. Our purpose in writing this article is to provide
an integrative review of the psychological research on
expert problem solving by taking a close look at what it
is, how it is acquired, and the implications for education
and instruction.

We structure the article around two interrelated
themes. First, that expertise can be understood from an
information-processing perspective by focusing on the
role of knowledge, its content, and the cognitive processes
that bring that knowledge to bear during problem solving.
Second, that expert performance is acquired through
deliberate practice (Ericsson et al., 1993). This view that
expertise can be decomposed into a set of knowledge
structures that are learned has implications for how to
structure learning environments in order to facilitate its
acquisition. In the rest of this article, we explore these
themes beginning with a brief review of the methods used
to examine expertise, followed by a detailed analysis of how
expertise impacts each stage of problem solving. We then
review the research on its acquisition with a focus on the
underlying cognitive processes. In the final section, we
discuss current directions and implications for instruction.

Methods

Researchers have typically used one of two approaches
to study expertise, what Chi (2006) has called absolute
and relative methods. Absolute methods consist of an in-
depth examination of high-level experts, usually in a task
specific to their domain of expertise, such as playing a
game of chess for chess experts. Defining the level of
expertise occurs through established criteria for a par-
ticular domain. For some domains, there are written
criteria (a rating or scoring system) to determine rank,
such as in chess. In other domains, expertise is de-
termined by a certain level of professional achieve-
ment, such as becoming a professional ballet dancer,
physicist, or a commercial airline pilot. The absolute
approach is aimed at providing an in-depth description
of the knowledge and cognitive processes underlying
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expert performance. This approach includes both observa-
tional studies as well as historical analyses of famous cases
(e.g., James Clerk Maxwell; Nersessian, 1992). Relative
methods involve comparing more- to less-experienced
participants, often in a neutral task outside of their domain
expertise, such as recalling chess positions for chess experts.
The advantage of this approach is that it can uncover the
structures and processes of performing the task, and not
merely the ways that experts can excel. Both approaches
have made extensive use of verbal protocols to obtain
detailed data as to the thinking processes that accompany
expert (and novice) performance (Ericsson, 2006).

These approaches have produced a wealth of findings
on the nature of expertise (for general reviews see the
section titled ‘Further reading’). In the next section, we
draw upon this literature to examine the impact of exper-
tise on problem solving. We begin by describing a general
theory of problem solving and then at each stage of the
process describe the differences between expert versus
novice performance and the explanations to account for
those differences.

Expert Problem Solving: Major Findings

Most theories of human problem solving consist of some
formulation of the following seven stages:

1. problem categorization,
2. construction of a mental representation of the problem,
3. search for the appropriate problem-solving operators

(e.g., strategies or procedures),
4. retrieval and application of those operators to the

problem,
5. evaluation of problem-solving progress and solution,
6. iterating stages 1–4 if not satisfied with progress/solu-

tion, and finally
7. storage of the solution (e.g., Newell and Simon, 1972).

These stages may not be strictly sequential, but may be
iterative. In the following subsections, we describe the
expertise findings relevant to each stage and discuss the
theories proposed to account for them (see Figure 1 for
an illustration of the problem-solving stages and the
impact of expertise on each one).

Schema

Schema

Schema
Relevant concepts, facts,

procedures,
constraints

Schema
Relevant concepts, facts,

procedures,
constraints

Schema
Relevant concepts, facts,

procedures,
constraints

Schema

Prior knowledge

Focus on deep features of
the problem–access other
relevant knowledge.

Apply appropriate procedures
given the context. Engage
domain-specific forward-
working strategies.

Specific solutions

Storage of solution

Search for operators
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representation
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Figure 1 The impact of expertise on each stage of the problem-solving process.
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Problem Categorization

The first stage involves the categorization of the problem.
This stage is critical as it impacts all subsequent problem-
solving processes, such as determining what knowledge to
use and what strategies are relevant. For example, after a
statistician categorizes a statistics problem as a permutations
problem, she or he can proceed by retrieving and applying
the appropriate formula to solve it. Much research has
shown that experts’ domain knowledge actually influences
problem perception.When experts are presented a problem
or task relevant to their domain of expertise, they see the
problem in terms of prior meaningful patterns of informa-
tion. For example, Chase and Simon (1973a, 1973b) found
that expert chess players recalled more than novices on a
memory task in which they were briefly presented a game
scenario that they had to reconstruct. The experts recalled
approximately four times as many pieces as the novices but
only for scenarios that were from real games; when the
scenario consisted of randomly placed pieces, experts per-
formed at the same level as the novices. It was hypothesized
that the experts’ prior knowledge facilitated the recognition
and recall of domain-relevant patterns, or chunks, of infor-
mation from the scenarios (see Figure 2 for an example of
chunks in chess). These chunks provide experts useful ways
to perceive and reason about large amounts of domain-
relevant information.

Similar effects have been shown in research on medical
expertise. For example, Lesgold et al. (1988) compared
expert to novice physicians as they diagnosed X-ray
films of the lungs. The physicians were asked to draw on
the X-rays to identify the important features of their
diagnosis. Both groups noticed abnormalities associated
with a collapsed lung. However, experts were much more
likely to identify the correct shape and size of the abnor-
mality, whereas novices identified abnormalities that were
approximately half the size of those identified by the
experts. This work shows that experts and novices can
perceive a problem very differently even when looking at
the exact same stimulus. This finding that expert knowl-
edge impacts problem perception has been found in a
variety of tasks and domains including: architecture
(Akin, 1980), mathematics (Silver, 1979), and naturalistic
decision-making (NDM) tasks such as a fireman determin-
ing the safety of a room in a burning building (Klein, 1998).

A related effect is the finding that experts aremore likely
than novices to categorize problems at a deep level of
abstraction (or function), whereas novices are more likely
to categorize problems based on the surface features. For
example, in the seminalwork byChi et al. (1981) experts and
novices were asked to sort physics word problems based on
their similarity. Experts sorted them according to their
underlying physics principles, such as Newton’s second

67
Black 1 2 3

54 6 7

White

Figure 2 An example of a chess master’s chunk-by-chunk recall of position 67 from Reinfeld (1945) with each new chunk circled.
From Chase, W. G. and Simon, H. A. (1973). The minds eye in chess. In Chass, W. G. (ed.) Visual Information Processing, pp 215–281.
New York: Academic Press. With permission from Elsevier.
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law, whereas novices sorted them based on their surface
features such as inclined planes or pulleys. Similar results
have been shown in mathematics, where novices categor-
ized algebra problems on the basis of the problem content
(e.g., river problems), whereas more experienced students
categorized them based on the underlying equation or
principle (Silver, 1979). This effect has been found in a
number of domains, including computer programming
(Adelson, 1981), medicine (Groen and Patel, 1988), and
engineering design (Moss, et al., 2006) among others.

These results have typically been explained by the
hypothesis that experts’ problem schemas are organized
differently than novices. Schemas are hierarchical knowl-
edge structures that include prototypical information
about the type of problem, including declarative knowl-
edge of objects, facts, strategies, and constraints, and may
also include the procedural operators for solving the
problem (Marshall, 1995). Expert schemas are hypothe-
sized to include many principle or structural features of
the problem type, whereas novice schemas include few
structural features and shallower, surface features.
Schemas play a critical role in categorizing a problem.
See Figure 1 for the interactive role schemas play in both
problem perception and construction of the problem rep-
resentation. Next, we discuss how experts and novices
construct a mental representation of the whole problem.

Construction of a Representation

After a problem has been categorized, the problem solver
can begin to elaborate their mental representation that
goes beyond the given information of the task environ-
ment. For some simple or well-practiced tasks (e.g.,
puzzle-type tasks, NDM tasks, and procedural skills),
this step happens as rapidly as categorization but for
other complex, multistep problems, such as those in phys-
ics or ill-structured tasks such as design tasks, construct-
ing a mental representation is an iterative process that
takes time to develop. Constructing a representation
involves specifying the important features of the task
such as the relevant objects, operators, and constraints.
When experts are solving complex or ill-structured pro-
blems, they approach them qualitatively, first examining
and elaborating the givens of the problem and then refin-
ing that representation. For example, Voss and Post (1988)
examined how experts and novices in political science
solved an open-ended problem on how to increase crop
productivity in the Soviet Union. They showed that
experts spent more time than novices in developing
their representation of the problem by elaborating the
history and causal factors underlying the problem.

These results are consistent with the schema account
of expertise in which experts’ schematic knowledge pro-
vides access to additional knowledge and strategies to

help elaborate and develop the initial problem represen-
tation. This process has been hypothesized to be highly
interactive (Chi et al., 1981). Based on the initial categori-
zation, the activated schema can provide additional infor-
mation, strategies, constraints, and expectations to further
characterize and elaborate the problem representation
that may in turn activate other relevant schemas. For
very complex problems, this process may take several
iterations. Consistent with the categorization results
described earlier, McDermott and Larkin (1978) (see
also Reimann and Chi, 1989) have proposed that physi-
cists construct problem representations at different levels
of abstraction including: literal, naive, scientific (qualita-
tive), and algebraic (see Table 1 for a description of each
level). Differences in levels of representation have also
been shown in medicine where experts represent text
descriptions of patient cases with an abstract situation
model, whereas novices represent them more at the
text-based (or surface) level (Groen and Patel, 1988).

Not only does expert knowledge facilitate the devel-
opment and elaboration of the problem representation,
but research also shows these representations are very
durable. Experts have been shown to quickly encode
problems and are able to easily access that representation
even after disruption, whereas novices often take much
longer to encode and re-represent a problem (Ericsson
and Kintsch, 1995). The durability of expert memory and
encoding has been shown in a variety of domains, includ-
ing bridge (Charness, 1979), medicine (Norman et al.,
1989), and computer programming (McKeithen et al.,
1981). To account for these findings, Ericsson and Kintsch
postulate that experts have developed effective long-term
working memories that use very specific cues in the task
environment to reliably retrieve prior knowledge struc-
tures (chunks and schemas).

Table 1 Four different levels of abstraction in representing
physics problems

Representation
level Description

Literal Representations containing keywords from
the text.

Naive Representations containing literal objects
and their spatial relationships, often
accompanied by a sketch of the situation.

Scientific Representations containing idealized objects
(points, bodies) and physical concepts
(forces, momenta).

Algebraic Equations containing physical concepts and
their relationships.

From Reimann, P. and Chi, M. T. H. (1989). Human expertise. In
Gilhooly, K. J. (ed.) Human and Machine Problem Solving,
pp 161–191. New York: Plenum, with permission from Springer.
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Application of Problem-Solving Procedures

After a problem representation has been constructed, the
problem solver can then access and apply the appropriate
problem-solving strategies and procedures to solve it.
Experts have been shown to have more reliable access
than novices to domain-specific solution procedures for
well-practiced problem types. For simple problems, they
make decisions faster and more accurately than novices.
Research has also shown that experts and novices use
different types of strategies when solving simple pro-
blems. Experts are more likely to use forward-working
strategies for well-practiced problems, whereas novices
use backward-working strategies. Forward-working stra-
tegies consist of working toward the solution from the
domain principles. For example, physics experts first
identify the principles for the task and then apply the
domain-specific strategies and procedures, working step-
by-step toward the solution (Simon and Simon, 1978).
In contrast, novices have been shown to use general
problem-solving heuristics, such as means–ends analysis
to work backward from the problem goal (e.g., a sought
value in physics or math). However, strategy use for both
experts and novices critically depends on the relationship
between prior knowledge and the task. Experts may also
use general problem-solving methods and backward-
working strategies when solving very novel tasks in the
domain (e.g., physicists in their own research).

Solution Evaluation and Storage

Solution evaluation is the process of assessing a problem
solution. Research has shown that experts spend more time
than novices evaluating their solutions to make sure they
satisfy task constraints (Groen and Patel, 1988; Voss and
Post, 1988). Experts are also more likely than novices to
identify and correct errors. For example, historians given a
problem outside their subdomain are more likely than
novices to seek additional resources and information to
revise their initial framing of the problem, whereas novices
are more likely to proceed with their initial incorrect
assumptions (Wineburg, 1998). This research suggests that
experts have developed better meta-cognitive skills (i.e.,
reflective monitoring) than novices for domain-relevant
tasks. These skills may be particularly useful when adapt-
ing their knowledge to novel tasks in the domain.

After a solution has been generated it can be stored for
later use. Much research shows that prior knowledge has a
large impact on what is learned. For example, it is easier for
experts to acquire new knowledge in the domain than for
novices. Baseball experts have better recall than novices after
listening to the broadcast of a novel baseball game (Spilich
et al., 1979) and expert pilots recall more than novices after
listening to new air traffic control messages (Morrow et al.,
2001). Experts’ rich, well-organized knowledge structures

enable them to easily incorporate (assimilate) new informa-
tion into their prior knowledge.

Summary

Theoretical accounts of expert–novice differences are
primarily articulated in the representation and organiza-
tion of expert knowledge. Not only do experts have more
conceptual and procedural knowledge than novices, but
their knowledge is also organized in ways that facilitate
effective problem solving. They are able to quickly recog-
nize large chunks of domain-relevant information, see the
deep features of the problem, and effectively elaborate their
initial problem representations. They can apply domain-
specific strategies, efficiently monitor their problem-solving
progress by refining and correcting solutions, and can
learn new domain-relevant information easier than
novices. In the next section, we briefly review the theo-
retical accounts of how this knowledge is acquired.

Acquisition of Expertise

Much research shows that a minimum of 10 years of daily
deliberate practice is necessary to develop expertise in
most domains (Ericsson et al., 1993). Ericsson and collea-
gues refer to deliberate practice as

repeated experience in which the individual can attend to

the critical aspects of the situation and incrementally

improve her or his performance in response to knowledge

of results, feedback, or both from a teacher (Ericsson et al.,

1993: 368).

This perspective emphasizes how the type and structure
of practice is critical to the acquisition of expert perfor-
mance. In contrast to this perspective is the view that
expertise is due to some talent or innate ability. The talent
perspective, originally proposed by Galton (1869), is the
notion that psychological traits, like physical traits, are
inherited and family lineage (i.e., genes) strongly influences
the personwho achieves expert performance. Most modern
formulations of this perspective hypothesize that expertise
is the result of a complex interaction between genetic
dispositions and experience (e.g., Simonton, 1999). Given
that the talent perspective has received limited empirical
support (see Howe et al., 1998 for a discussion and com-
mentary) and much research shows that expert advantages
are due to their domain knowledge (and not general
reasoning or memory abilities), we focus on the cognitive
learning processes that give rise to this knowledge.

Expert knowledge is composed of both declarative and
procedural components. Declarative knowledge consists of
descriptions about the world, including facts, strategies, and
principles, and is commonly referred to as knowing that.
Procedural knowledge consists of information for how to
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perform particular actions to accomplish task goals, and is
commonly referred to as knowing how. Different learning
processes have been hypothesized to account for the acqui-
sition of these two types of knowledge. Learning declarative
knowledge has been hypothesized to occur through obser-
vation, comprehension processes for oral and written dis-
course, induction, analogy, inference, and self-explanation
(see Chi and Ohlsson, 2005 for a recent review of the
learning mechanisms that lead to the acquisition of com-
plex declarative knowledge). The key point is that declar-
ative knowledge can be acquired through a number of
reflective cognitive processes. Learning environments (e.g.,
classroom instruction) can be structured to facilitate its
acquisition by including and improving these processes.

The acquisition of procedural knowledge or skill is
hypothesized to occur through the repeated practice of a
particular task or problem (Anderson, 1982, 1987). Fitts
(1964) has characterized skill acquisition into three stages
of performance, including the cognitive, associative, and
automatic stages. During the cognitive stage, a person
applies declarative knowledge to solve a problem and
performance is characterized as being slow, effortful, and
error prone. In domains such as mathematics and physics,
novices rely heavily on declarative knowledge from prior
examples to solve new problems (e.g., VanLehn, 1998).
Students often apply this knowledge by making an anal-
ogy between the current problem they are solving and a
previous problem that was solved similarly or had similar
content. In the associative stage, the skill is practiced and
performance becomes faster, more accurate, and less sus-
ceptible to interference. In this stage, students rely less on
examples and more on applying learned rules to solve the
problem. In the automatic stage, the skill has become
proceduralized and is characterized by the fast application
of the knowledge (or rules) with little or no errors and
requires minimal cognitive resources.

Research on skill acquisition has revealed a power-law
relationship between the amount of practice and perfor-
mance. Generally, it shows that performance improves
most when first learning a task, followed by decreasing
learning gains as practice continues until performance
asymptotes. However, the pattern of learning is more spe-
cific than the fast-then-slow pattern: when plotted on a
logarithmic scale, the power-law relationship is revealed as
an exact straight line. This exact relationship has been shown
to be a very general phenomenon and has been observed in
a variety of activities from learning to roll cigars to learning
to solve math problems (see Proctor and Dutta, 1995 for a
review). See Figure 3 for a real-world example of the
power-law relationship.

One mechanism hypothesized to account for procedur-
al learning is knowledge compilation (Anderson, 1987).
Knowledge compilation acts as a translation device that
interprets, or compiles, declarative knowledge into a set of
specific procedural rules given a particular goal. As those

procedures (rules) get repeatedly applied they become
concatenated or chunked together into more compact
rules. This mechanism shows how cognitive processing
changes from relying on the interpretation and retrieval of
declarative knowledge to embedding that knowledge into a
set of procedural rules that becomemore compact with use.
The result is a context-specific representation of the skill
that can be quickly and efficiently executed.

In sum, research has shown that the acquisition of
expert performance requires extended deliberate practice
in the domain. Expert knowledge is composed of both
declarative and procedural knowledge and research on
learning has shown that declarative knowledge can be
acquired through multiple cognitive pathways, whereas
procedural knowledge comes from the repeated practice
of a task. This view suggests that the type and structure of
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Figure 3 An illustration of the power-law relationship for the
development of Professor Asimov’s professional writing skills.
(a) The number of books Professor Isaac Asimov wrote as a
function of time in months. (b) The time to complete 100 books as
a function of practice, plotted with logarithmic coordinates on
both axes. FromOhlsson, S. (1992). The learning curve for writing
books: Evidence of Professor Asimov. Psychological Science
3, 380–382. With permission from Wiley-Blackwell.
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the learning environment are critical to the acquisition of
expert performance. In the final section, we discuss two
extensions to the traditional paradigm for research on
expertise.

Current Directions

Current research extends the traditional paradigm in a
number of ways. In this section, we focus on two: collabo-
rative expertise and using expert–novice differences to
determine targets of learning. In recent work, Schunn
and colleagues (Tollinger et al., 2006) had the unique
opportunity to examine how over 50 NASA scientists
worked together to plan the day-to-day operations of
the two Mars rovers (Mars Explorer Rover Mission). The
scientists’ daily task was to analyze the data from the
previous day and then come up with a plan for what
experiments the rovers would conduct on the next day.
They found that the amount of planning decreased across
days and followed a learning curve similar to those typi-
cally observed for the acquisition of individual expertise,
suggesting that expertise can also be acquired at the group
level. Initial analyses suggest that the speedup in planning
was due to both cognitive factors, such as individual knowl-
edge chunking, plan reuse, and reducing task uncertainty,
as well as social factors, such as coordinating information
with others and the effect of leadership on the group.

In other recent work, Nokes et al. (2006) conducted a
laboratory experiment on the effect of expertise on col-
laborative problem solving. They examined both expert
and novice pilots’ problem-solving performance when
either working alone or with another participant of the
same level of expertise. They found that experts working in
pairs showedmuch larger collaborative benefits than novices
working together, particularly for complex problem-solving
tasks. Analysis of verbal protocols revealed that expert
collaborative performance was supported by both domain
knowledge (e.g., elaborating each other’s contributions)
and collaborative skill (e.g., acknowledging and restating
the partner’s contributions). The pilot and NASA scientist
work extends the traditional paradigm and asks how
expertise impacts cognitive and social processes at both
the individual and the group level.

A second direction focuses on using expertise research
to help identify targets of learning for novices. For exam-
ple, Mestre and colleagues have used some of the classic
findings in physics expertise (e.g., Chi et al., 1981) to
develop an instructional intervention to help students
adopt similar strategies to that of the experts (Dufresne
et al., 1992; Mestre et al., 1993). In one study, students were
instructed to perform conceptual analyses vis-à-vis a com-
puter interface that was based on the way experts strategize
and solve problems, by first identifying the appropriate
principles, justifying the use of those principles, and then

articulating the solution procedures. They found that this
type of strategizing improved student’s conceptual under-
standing and subsequent problem solving compared to
control conditions where students used more traditional
approaches to solve problems (e.g., textbook instruction).
This research provides one example for how findings from
the expertise literature can be used to help improve
instructional techniques.

Conclusions

In this article, we reviewed the psychological research on
expertise in human problem solving. We saw that expert
knowledge impacts each stage of the problem-solving
process from problem perception to solution storage.
Expert knowledge is composed of both declarative and
procedural knowledge and is organized into knowledge
structures (e.g., chunks and schemas) that facilitate the
categorization and construction of a mental representa-
tion of the problem, support the selection of appropriate
strategies and procedures, provide constraints to evaluate
problem-solving progress, and provide a framework to
effectively store new information about the domain.
These knowledge structures are acquired through delib-
erate practice, and learning environments can be designed
to facilitate their acquisition. Future work should build
upon this rich knowledge base to further advance theories
of learning and instruction.
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